EconPapers    
Economics at your fingertips  
 

An artificial neural network approach to detect presence and severity of Parkinson’s disease via gait parameters

Tiwana Varrecchia, Stefano Filippo Castiglia, Alberto Ranavolo, Carmela Conte, Antonella Tatarelli, Gianluca Coppola, Cherubino Di Lorenzo, Francesco Draicchio, Francesco Pierelli and Mariano Serrao

PLOS ONE, 2021, vol. 16, issue 2, 1-16

Abstract: Introduction: Gait deficits are debilitating in people with Parkinson’s disease (PwPD), which inevitably deteriorate over time. Gait analysis is a valuable method to assess disease-specific gait patterns and their relationship with the clinical features and progression of the disease. Objectives: Our study aimed to i) develop an automated diagnostic algorithm based on machine-learning techniques (artificial neural networks [ANNs]) to classify the gait deficits of PwPD according to disease progression in the Hoehn and Yahr (H-Y) staging system, and ii) identify a minimum set of gait classifiers. Methods: We evaluated 76 PwPD (H-Y stage 1–4) and 67 healthy controls (HCs) by computerized gait analysis. We computed the time-distance parameters and the ranges of angular motion (RoMs) of the hip, knee, ankle, trunk, and pelvis. Principal component analysis was used to define a subset of features including all gait variables. An ANN approach was used to identify gait deficits according to the H-Y stage. Results: We identified a combination of a small number of features that distinguished PwPDs from HCs (one combination of two features: knee and trunk rotation RoMs) and identified the gait patterns between different H-Y stages (two combinations of four features: walking speed and hip, knee, and ankle RoMs; walking speed and hip, knee, and trunk rotation RoMs). Conclusion: The ANN approach enabled automated diagnosis of gait deficits in several symptomatic stages of Parkinson’s disease. These results will inspire future studies to test the utility of gait classifiers for the evaluation of treatments that could modify disease progression.

Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0244396 (text/html)
https://journals.plos.org/plosone/article/file?id= ... 44396&type=printable (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:plo:pone00:0244396

DOI: 10.1371/journal.pone.0244396

Access Statistics for this article

More articles in PLOS ONE from Public Library of Science
Bibliographic data for series maintained by plosone ().

 
Page updated 2025-03-19
Handle: RePEc:plo:pone00:0244396