The role of clustering algorithm-based big data processing in information economy development
Hongyan Ma
PLOS ONE, 2021, vol. 16, issue 3, 1-14
Abstract:
The purposes are to evaluate the Distributed Clustering Algorithm (DCA) applicability in the power system’s big data processing and find the information economic dispatch strategy suitable for new energy consumption in power systems. A two-layer DCA algorithm is proposed based on K-Means Clustering (KMC) and Affinity Propagation (AP) clustering algorithms. Then the incentive Demand Response (DR) is introduced, and the DR flexibility of the user side is analyzed. Finally, the day-ahead dispatch and real-time dispatch schemes are combined, and a multi-period information economic dispatch model is constructed. The algorithm performance is analyzed according to case analyses of new energy consumption. Results demonstrate that the two-layer DCA’s calculation time is 5.23s only, the number of iterations is small, and the classification accuracy rate reaches 0.991. Case 2 corresponding to the proposed model can consume the new energy, and the income of the aggregator can be maximized. In short, the multi-period information economic dispatch model can consume the new energy and meet the DR of the user side.
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0246718 (text/html)
https://journals.plos.org/plosone/article/file?id= ... 46718&type=printable (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:plo:pone00:0246718
DOI: 10.1371/journal.pone.0246718
Access Statistics for this article
More articles in PLOS ONE from Public Library of Science
Bibliographic data for series maintained by plosone ().