Amyotrophic Lateral Sclerosis (ALS) prediction model derived from plasma and CSF biomarkers
Radhika Khosla,
Manjari Rain,
Suresh Sharma and
Akshay Anand
PLOS ONE, 2021, vol. 16, issue 2, 1-8
Abstract:
Amyotrophic Lateral Sclerosis (ALS) is a degenerative disorder of motor neurons which leads to complete loss of movement in patients. The only FDA approved drug Riluzole provides only symptomatic relief to patients. Early Diagnosis of the disease warrants the importance of diagnostic and prognostic models for predicting disease and disease progression respectively. In the present study we represent the predictive statistical model for ALS using plasma and CSF biomarkers. Forward stepwise (Binary likelihood) Logistic regression model is developed for prediction of ALS. The model has been shown to have excellent validity (94%) with good sensitivity (98%) and specificity (93%). The area under the ROC curve is 99.3%. Along with age and BMI, VEGF (Vascular Endothelial Growth Factor), VEGFR2 (Vascular Endothelial Growth Factor Receptor 2) and TDP43 (TAR DNA Binding Protein 43) in CSF and VEGFR2 and OPTN (Optineurin) in plasma are good predictors of ALS.
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0247025 (text/html)
https://journals.plos.org/plosone/article/file?id= ... 47025&type=printable (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:plo:pone00:0247025
DOI: 10.1371/journal.pone.0247025
Access Statistics for this article
More articles in PLOS ONE from Public Library of Science
Bibliographic data for series maintained by plosone ().