EconPapers    
Economics at your fingertips  
 

The combination of MMSE with VSRAD and eZIS has greater accuracy for discriminating mild cognitive impairment from early Alzheimer’s disease than MMSE alone

Keita Tokumitsu, Norio Yasui-Furukori, Junko Takeuchi, Koji Yachimori, Norio Sugawara, Yoshio Terayama, Nobuyuki Tanaka, Tatsunori Naraoka and Kazutaka Shimoda

PLOS ONE, 2021, vol. 16, issue 2, 1-13

Abstract: Background: Alzheimer’s disease (AD) is assessed by carefully examining a patient’s cognitive impairment. However, previous studies reported inadequate diagnostic accuracy for dementia in primary care settings. Many hospitals use the automated quantitative evaluation method known as the Voxel-based Specific Regional Analysis System for Alzheimer’s Disease (VSRAD), wherein brain MRI data are used to evaluate brain morphological abnormalities associated with AD. Similarly, an automated quantitative evaluation application called the easy Z-score imaging system (eZIS), which uses brain SPECT data to detect regional cerebral blood flow decreases associated with AD, is widely used. These applications have several indicators, each of which is known to correlate with the degree of AD. However, it is not completely known whether these indicators work better when used in combination in real-world clinical practice. Methods: We included 112 participants with mild cognitive impairment (MCI) and 128 participants with early AD in this study. All participants underwent MRI, SPECT, and the Mini-Mental State Examination (MMSE). Demographic and clinical characteristics were assessed by univariate analysis, and logistic regression analysis with a combination of MMSE, VSRAD and eZIS indicators was performed to verify whether the diagnostic accuracy in discriminating between MCI and early AD was improved. Results: The area under the receiver operating characteristic curve (AUC) for the MMSE score alone was 0.835. The AUC was significantly improved to 0.870 by combining the MMSE score with two quantitative indicators from the VSRAD and eZIS that assessed the extent of brain abnormalities. Conclusion: Compared with the MMSE score alone, the combination of the MMSE score with the VSRAD and eZIS indicators significantly improves the accuracy of discrimination between patients with MCI and early AD. Implementing VSRAD and eZIS does not require professional clinical experience in the treatment of dementia. Therefore, the accuracy of dementia diagnosis by physicians may easily be improved in real-world primary care settings.

Date: 2021
References: View complete reference list from CitEc
Citations:

Downloads: (external link)
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0247427 (text/html)
https://journals.plos.org/plosone/article/file?id= ... 47427&type=printable (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:plo:pone00:0247427

DOI: 10.1371/journal.pone.0247427

Access Statistics for this article

More articles in PLOS ONE from Public Library of Science
Bibliographic data for series maintained by plosone ().

 
Page updated 2025-03-19
Handle: RePEc:plo:pone00:0247427