Influence of the enterprise’s intelligent performance evaluation model using neural network and genetic algorithm on the performance compensation of the merger and acquisition parties in the commitment period
Yuanyuan Luo and
Da Ren
PLOS ONE, 2021, vol. 16, issue 3, 1-16
Abstract:
The purpose is to study the performance compensation of the bid purchased during the mergers and acquisitions (M&A) process. An intelligent model of enterprise performance appraisal is built to analyze the performances of the acquired enterprises. First, the evaluation indicators of enterprise performance are selected from both financial and non-financial aspects. An enterprise performance appraisal model is established based on the neural networks and optimized by the factor analysis method and Genetic Algorithm (GA). The principal factors affecting enterprise performance are analyzed. Then the M&A parties’ performances during the M&A commitment period under the earnings compensation mechanism are analyzed quantitatively. Corresponding hypotheses and evaluation indicators are established. Mean test results and regression analyses demonstrate that the hypotheses proposed are valid under particular circumstances. Introducing the earnings compensation mechanism during the M&A process can improve the enterprise performance effectively so that the earnings forecasted in the commitment period are significantly higher than the historical profitability. Hence, the earnings compensation mechanism plays a positive role in guiding enterprise performance. Comparison with models proposed in previous research reveals that the output error ratio of the designed corporate performance evaluation model is 1.16%, which can effectively evaluate corporate performance. The above results provide a reference for studying the impact of the earnings compensation mechanism on enterprise performance during the M&A process.
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0248727 (text/html)
https://journals.plos.org/plosone/article/file?id= ... 48727&type=printable (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:plo:pone00:0248727
DOI: 10.1371/journal.pone.0248727
Access Statistics for this article
More articles in PLOS ONE from Public Library of Science
Bibliographic data for series maintained by plosone ().