Design of a hesitant movement gesture for mobile robots
Jakob Reinhardt and
Klaus Bengler
PLOS ONE, 2021, vol. 16, issue 3, 1-19
Abstract:
In previous experiments, a back-off movement was introduced as a motion strategy of robots to facilitate the order of passage at bottlenecks in human-robot spatial interaction. In this article we take a closer look at the appropriate application of motion parameters that make the backward movement legible. Related works in distance perception, size-speed illusions, and viewpoint-based legibility considerations suggest a relationship between the size of the robot and the observer’s perspective on the expected execution of this movement. We performed a participant experiment (N = 50) in a virtual reality environment where participants adjusted the minimum required back-off length and preferred back-off speed as a result of the robot size, and the viewpoint of the back-off movement. We target a model-based approach on how appropriate back-off design translates to different sized robots and observer’s viewpoints. Thus, we allow the application of back-off in a variety of autonomous moving systems. The results show a significant correlation between the increasingly expected back-off lengths with increasing robot size, but only weak effects of the viewpoint on the requirements of this movement. An exploratory analysis suggests that execution time might be a promising parameter to consider for the design of legible motion.
Date: 2021
References: View complete reference list from CitEc
Citations:
Downloads: (external link)
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0249081 (text/html)
https://journals.plos.org/plosone/article/file?id= ... 49081&type=printable (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:plo:pone00:0249081
DOI: 10.1371/journal.pone.0249081
Access Statistics for this article
More articles in PLOS ONE from Public Library of Science
Bibliographic data for series maintained by plosone ().