EconPapers    
Economics at your fingertips  
 

An area efficient and high throughput implementation of layered min-sum iterative construction a posteriori probability LDPC decoder

Hasnain Raza, Syed Azhar Ali Zaidi, Aamir Rashid and Shafiq Haider

PLOS ONE, 2021, vol. 16, issue 3, 1-12

Abstract: Area efficient and high speed forward error correcting codes decoder are the demand of many high speed next generation communication standards. This paper explores a low complexity decoding algorithm of low density parity check codes, called the min-sum iterative construction a posteriori probability (MS-IC-APP), for this purpose. We performed the error performance analysis of MS-IC-APP for a (648,1296) regular QC-LDPC code and proposed an area and throughput optimized hardware implementation of MS-IC-APP. We proposed to use the layered scheduling of MS-IC-APP and performed other optimizations at architecture level to reduce the area and to increase the throughput of the decoder. Synthesis results show 6.95 times less area and 4 times high throughput as compared to the standard min-sum decoder. The area and throughput are also comparable to the improved variants of hard-decision bit-flipping (BF) decoders, whereas, the simulation results show a coding gain of 2.5 over the best implementation of BF decoder in terms of error performance.

Date: 2021
References: View complete reference list from CitEc
Citations:

Downloads: (external link)
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0249269 (text/html)
https://journals.plos.org/plosone/article/file?id= ... 49269&type=printable (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:plo:pone00:0249269

DOI: 10.1371/journal.pone.0249269

Access Statistics for this article

More articles in PLOS ONE from Public Library of Science
Bibliographic data for series maintained by plosone ().

 
Page updated 2025-03-19
Handle: RePEc:plo:pone00:0249269