The robust estimation of examinee ability based on the four-parameter logistic model when guessing and carelessness responses exist
Xiaozhu Jian,
Dai Buyun and
Deng Yuanping
PLOS ONE, 2021, vol. 16, issue 4, 1-16
Abstract:
The three-parameter Logistic model (3PLM) and the four-parameter Logistic model (4PLM) have been proposed to reduce biases in cases of response disturbances, including random guessing and carelessness. However, they could also influence the examinees who do not guess or make careless errors. This paper proposes a new approach to solve this problem, which is a robust estimation based on the 4PLM (4PLM-Robust), involving a critical-probability guessing parameter and a carelessness parameter. This approach is compared with the 2PLM-MLE(two-parameter Logistic model and a maximum likelihood estimator), the 3PLM-MLE, the 4PLM-MLE, the Biweight estimation and the Huber estimation in terms of bias using an example and three simulation studies. The results show that the 4PLM-Robust is an effective method for robust estimation, and its calculation is simpler than the Biweight estimation and the Huber estimation.
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0250268 (text/html)
https://journals.plos.org/plosone/article/file?id= ... 50268&type=printable (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:plo:pone00:0250268
DOI: 10.1371/journal.pone.0250268
Access Statistics for this article
More articles in PLOS ONE from Public Library of Science
Bibliographic data for series maintained by plosone ().