Cerebrospinal fluid dynamics correlate with neurogenic claudication in lumbar spinal stenosis
Hyun-Ji Kim,
Hakseung Kim,
Young-Tak Kim,
Chul-Ho Sohn,
Keewon Kim and
Dong-Joo Kim
PLOS ONE, 2021, vol. 16, issue 5, 1-13
Abstract:
Neurogenic claudication is a typical manifestation of lumbar spinal stenosis (LSS). However, its pathophysiology is still unclear. The severity of clinical symptoms has been shown not to correlate with the degree of structural stenosis. Altered cerebrospinal fluid (CSF) flow has been suggested as one of the causative factors of LSS. The objectives of this study were to compare CSF dynamics at the lumbosacral level between patients with LSS and healthy controls and to investigate whether CSF dynamics parameters explain symptom severity in LSS. Phase-contrast magnetic resonance imaging (PC-MRI) was conducted to measure CSF dynamics in 18 healthy controls and 9 patients with LSS. Cephalic peak, caudal peak, and peak-to-peak CSF velocities were evaluated at the lumbosacral level in the patients and controls. The power of CSF dynamics parameters to predict symptom severity was determined using a linear regression analysis adjusted for demographic and structural variables. Significantly attenuated CSF flow velocity was observed in the patients compared with the controls. The cephalic peak, caudal peak, and peak-to-peak velocities at the lumbar level were greater in the controls than in the patients (p
Date: 2021
References: View complete reference list from CitEc
Citations:
Downloads: (external link)
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0250742 (text/html)
https://journals.plos.org/plosone/article/file?id= ... 50742&type=printable (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:plo:pone00:0250742
DOI: 10.1371/journal.pone.0250742
Access Statistics for this article
More articles in PLOS ONE from Public Library of Science
Bibliographic data for series maintained by plosone ().