EconPapers    
Economics at your fingertips  
 

Tracking conflict and emotions with a computational qualitative discourse analytic support approach

Nikodem Rybak and Daniel J Angus

PLOS ONE, 2021, vol. 16, issue 5, 1-29

Abstract: Accurate inferences of the emotional state of conversation participants can be critical in shaping analysis and interpretation of conversational exchanges. In qualitative analyses of discourse, most labelling of the perceived emotional state of conversation participants is performed by hand, and is limited to selected moments where an analyst may believe that emotional information is valuable for interpretation. This reliance on manual labelling processes can have implications for repeatability and objectivity, both in terms of accuracy, but also in terms of changes in emotional state that might go unnoticed. In this paper we introduce a qualitative discourse analytic support method intended to support the labelling of emotional state of conversational participants over time. We demonstrate the utility of the technique using a suite of well-studied broadcast interviews, taking a particular focus on identifying instances of inter-speaker conflict. Our findings indicate that this two-step machine learning approach can help decode how moments of conflict arise, sustain, and are resolved through the mapping of emotion over time. We show how such a method can provide useful evidence of the change in emotional state by interlocutors which could be useful to prompt and support further in-depth study.

Date: 2021
References: View complete reference list from CitEc
Citations:

Downloads: (external link)
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0251186 (text/html)
https://journals.plos.org/plosone/article/file?id= ... 51186&type=printable (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:plo:pone00:0251186

DOI: 10.1371/journal.pone.0251186

Access Statistics for this article

More articles in PLOS ONE from Public Library of Science
Bibliographic data for series maintained by plosone ().

 
Page updated 2025-03-19
Handle: RePEc:plo:pone00:0251186