Statistical privacy-preserving message broadcast for peer-to-peer networks
David Mödinger,
Jan-Hendrik Lorenz and
Franz J Hauck
PLOS ONE, 2021, vol. 16, issue 5, 1-24
Abstract:
Privacy concerns are widely discussed in research and society in general. For the public infrastructure of financial blockchains, this discussion encompasses the privacy of the originator of a transaction broadcasted on the underlying peer-to-peer network. Adaptive diffusion is an approach to expose an alternative source of a message to attackers. However, this approach assumes an unsuitable attacker model and a non-realistic network model for current peer-to-peer networks on the Internet. We transform adaptive diffusion into a new statistical privacy-preserving broadcast protocol for realistic current networks. We model a class of unstructured peer-to-peer networks as organically growing graphs and provide models for other classes of such networks. We show that the distribution of shortest paths can be modelled using a normal distribution N ( μ , σ 2 ). We determine statistical estimators for μ, σ via multivariate models. The model behaves logarithmic over the number of nodes n and proportional to an inverse exponential over the number of added edges per node k. These results facilitate the computation of optimal forwarding probabilities during the dissemination phase for maximum privacy, with participants having only limited information about network topology.
Date: 2021
References: View complete reference list from CitEc
Citations:
Downloads: (external link)
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0251458 (text/html)
https://journals.plos.org/plosone/article/file?id= ... 51458&type=printable (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:plo:pone00:0251458
DOI: 10.1371/journal.pone.0251458
Access Statistics for this article
More articles in PLOS ONE from Public Library of Science
Bibliographic data for series maintained by plosone ().