A fast and effective detection framework for whole-slide histopathology image analysis
Jun Ruan,
Zhikui Zhu,
Chenchen Wu,
Guanglu Ye,
Jingfan Zhou and
Junqiu Yue
PLOS ONE, 2021, vol. 16, issue 5, 1-22
Abstract:
Pathologists generally pan, focus, zoom and scan tissue biopsies either under microscopes or on digital images for diagnosis. With the rapid development of whole-slide digital scanners for histopathology, computer-assisted digital pathology image analysis has attracted increasing clinical attention. Thus, the working style of pathologists is also beginning to change. Computer-assisted image analysis systems have been developed to help pathologists perform basic examinations. This paper presents a novel lightweight detection framework for automatic tumor detection in whole-slide histopathology images. We develop the Double Magnification Combination (DMC) classifier, which is a modified DenseNet-40 to make patch-level predictions with only 0.3 million parameters. To improve the detection performance of multiple instances, we propose an improved adaptive sampling method with superpixel segmentation and introduce a new heuristic factor, local sampling density, as the convergence condition of iterations. In postprocessing, we use a CNN model with 4 convolutional layers to regulate the patch-level predictions based on the predictions of adjacent sampling points and use linear interpolation to generate a tumor probability heatmap. The entire framework was trained and validated using the dataset from the Camelyon16 Grand Challenge and Hubei Cancer Hospital. In our experiments, the average AUC was 0.95 in the test set for pixel-level detection.
Date: 2021
References: View complete reference list from CitEc
Citations:
Downloads: (external link)
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0251521 (text/html)
https://journals.plos.org/plosone/article/file?id= ... 51521&type=printable (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:plo:pone00:0251521
DOI: 10.1371/journal.pone.0251521
Access Statistics for this article
More articles in PLOS ONE from Public Library of Science
Bibliographic data for series maintained by plosone ().