Magnetic resonance imaging reconstruction algorithm under complex convolutional neural network in diagnosis and prognosis of cerebral infarction
Jie Dong,
Shujun Zhao,
Yun Meng,
Yong Zhang and
Suxiao Li
PLOS ONE, 2021, vol. 16, issue 5, 1-13
Abstract:
This study was to explore the application value of magnetic resonance imaging (MRI) image reconstruction model based on complex convolutional neural network (CCNN) in the diagnosis and prognosis of cerebral infarction. Two image reconstruction methods, frequency domain reconstruction network (FDRN) and image domain reconstruction network (IDRN), were introduced based on the CCNN algorithm. In addition, they were integrated to form two new MRI image reconstruction models, namely D-FDRN and D-IDRN. The peak signal to noise ratio (PSNR) value and structural similarity index measure (SSIM) value of the image were compared and analyzed before and after the integration. The MRI images of patients with cerebral infarction in the dataset were undertaken as the data source, the average diffusion coefficient (DCavg) and apparent diffusion coefficient (ADC) values of different parts of the MRI image were measured, respectively. The correlation of the vein abnormality grading (VABG) to the infarct size and the degree of stenosis of the responsible vessel was analyzed in this study. The results showed that the PSNR and SSIM values of the MRI reconstructed image of the D-IDRN algorithm based on the CCNN algorithm in this study were higher than those of other algorithms. There was a positive correlation between the VABG and the infarct size (r = 0.48 and P = 0.002), and there was a positive correlation between the VABG the degree of stenosis of the responsible vessel (r = 0.58 and P
Date: 2021
References: View complete reference list from CitEc
Citations:
Downloads: (external link)
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0251529 (text/html)
https://journals.plos.org/plosone/article/file?id= ... 51529&type=printable (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:plo:pone00:0251529
DOI: 10.1371/journal.pone.0251529
Access Statistics for this article
More articles in PLOS ONE from Public Library of Science
Bibliographic data for series maintained by plosone ().