Deep learning to predict long-term mortality in patients requiring 7 days of mechanical ventilation
Naomi George,
Edward Moseley,
Rene Eber,
Jennifer Siu,
Mathew Samuel,
Jonathan Yam,
Kexin Huang,
Leo Anthony Celi and
Charlotta Lindvall
PLOS ONE, 2021, vol. 16, issue 6, 1-13
Abstract:
Background: Among patients with acute respiratory failure requiring prolonged mechanical ventilation, tracheostomies are typically placed after approximately 7 to 10 days. Yet half of patients admitted to the intensive care unit receiving tracheostomy will die within a year, often within three months. Existing mortality prediction models for prolonged mechanical ventilation, such as the ProVent Score, have poor sensitivity and are not applied until after 14 days of mechanical ventilation. We developed a model to predict 3-month mortality in patients requiring more than 7 days of mechanical ventilation using deep learning techniques and compared this to existing mortality models. Methods: Retrospective cohort study. Setting: The Medical Information Mart for Intensive Care III Database. Patients: All adults requiring ≥ 7 days of mechanical ventilation. Measurements: A neural network model for 3-month mortality was created using process-of-care variables, including demographic, physiologic and clinical data. The area under the receiver operator curve (AUROC) was compared to the ProVent model at predicting 3 and 12-month mortality. Shapley values were used to identify the variables with the greatest contributions to the model. Results: There were 4,334 encounters divided into a development cohort (n = 3467) and a testing cohort (n = 867). The final deep learning model included 250 variables and had an AUROC of 0.74 for predicting 3-month mortality at day 7 of mechanical ventilation versus 0.59 for the ProVent model. Older age and elevated Simplified Acute Physiology Score II (SAPS II) Score on intensive care unit admission had the largest contribution to predicting mortality. Discussion: We developed a deep learning prediction model for 3-month mortality among patients requiring ≥ 7 days of mechanical ventilation using a neural network approach utilizing readily available clinical variables. The model outperforms the ProVent model for predicting mortality among patients requiring ≥ 7 days of mechanical ventilation. This model requires external validation.
Date: 2021
References: View complete reference list from CitEc
Citations:
Downloads: (external link)
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0253443 (text/html)
https://journals.plos.org/plosone/article/file?id= ... 53443&type=printable (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:plo:pone00:0253443
DOI: 10.1371/journal.pone.0253443
Access Statistics for this article
More articles in PLOS ONE from Public Library of Science
Bibliographic data for series maintained by plosone ().