Calculation and realization of new method grey residual error correction model
Lifang Xiao,
Xiangyang Chen and
Hao Wang
PLOS ONE, 2021, vol. 16, issue 7, 1-13
Abstract:
Aiming at the problem of prediction accuracy of stochastic volatility series, this paper proposes a method to optimize the grey model(GM(1,1)) from the perspective of residual error. In this study, a new fitting method is firstly used, which combines the wavelet function basis and the least square method to fit the residual data of the true value and the predicted value of the grey model(GM(1,1)). The residual prediction function is constructed by using the fitting method. Then, the prediction function of the grey model(GM(1,1)) is modified by the residual prediction function. Finally, an example of the wavelet residual-corrected grey prediction model (WGM) is obtained. The test results show that the fitting accuracy of the wavelet residual-corrected grey prediction model has irreplaceable advantages.
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0254154 (text/html)
https://journals.plos.org/plosone/article/file?id= ... 54154&type=printable (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:plo:pone00:0254154
DOI: 10.1371/journal.pone.0254154
Access Statistics for this article
More articles in PLOS ONE from Public Library of Science
Bibliographic data for series maintained by plosone ().