Research on insulator defect detection algorithm of transmission line based on CenterNet
Chunming Wu,
Xin Ma,
Xiangxu Kong and
Haichao Zhu
PLOS ONE, 2021, vol. 16, issue 7, 1-13
Abstract:
The reliability of the insulator has directly affected the stable operation of electric power system. The detection of defective insulators has always been an important issue in smart grid systems. However, the traditional transmission line detection method has low accuracy and poor real-time performance. We present an insulator defect detection method based on CenterNet. In order to improve detection efficiency, we simplified the backbone network. In addition, an attention mechanism is utilized to suppress useless information and improve the accuracy of network detection. In image preprocessing, the blurring of some detected images results in the samples being discarded, so we use super-resolution reconstruction algorithm to reconstruct the blurred images to enhance the dataset. The results show that the AP of the proposed method reaches 96.16% and the reasoning speed reaches 30FPS under the test condition of NVIDIA GTX 1080 test conditions. Compared with Faster R-CNN, YOLOV3, RetinaNet and FSAF, the detection accuracy of proposed method is greatly improved, which fully proves the effectiveness of the proposed method.
Date: 2021
References: View complete reference list from CitEc
Citations:
Downloads: (external link)
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0255135 (text/html)
https://journals.plos.org/plosone/article/file?id= ... 55135&type=printable (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:plo:pone00:0255135
DOI: 10.1371/journal.pone.0255135
Access Statistics for this article
More articles in PLOS ONE from Public Library of Science
Bibliographic data for series maintained by plosone ().