EconPapers    
Economics at your fingertips  
 

An application of the ensemble Kalman filter in epidemiological modelling

Rajnesh Lal, Weidong Huang and Zhenquan Li

PLOS ONE, 2021, vol. 16, issue 8, 1-25

Abstract: Since the novel coronavirus (COVID-19) outbreak in China, and due to the open accessibility of COVID-19 data, several researchers and modellers revisited the classical epidemiological models to evaluate their practical applicability. While mathematical compartmental models can predict various contagious viruses’ dynamics, their efficiency depends on the model parameters. Recently, several parameter estimation methods have been proposed for different models. In this study, we evaluated the Ensemble Kalman filter’s performance (EnKF) in the estimation of time-varying model parameters with synthetic data and the real COVID-19 data of Hubei province, China. Contrary to the previous works, in the current study, the effect of damping factors on an augmented EnKF is studied. An augmented EnKF algorithm is provided, and we present how the filter performs in estimating models using uncertain observational (reported) data. Results obtained confirm that the augumented-EnKF approach can provide reliable model parameter estimates. Additionally, there was a good fit of profiles between model simulation and the reported COVID-19 data confirming the possibility of using the augmented-EnKF approach for reliable model parameter estimation.

Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0256227 (text/html)
https://journals.plos.org/plosone/article/file?id= ... 56227&type=printable (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:plo:pone00:0256227

DOI: 10.1371/journal.pone.0256227

Access Statistics for this article

More articles in PLOS ONE from Public Library of Science
Bibliographic data for series maintained by plosone ().

 
Page updated 2025-03-19
Handle: RePEc:plo:pone00:0256227