EconPapers    
Economics at your fingertips  
 

A new framework for warehouse assessment using a Genetic-Algorithm driven analytic network process

Wafa’ H AlAlaween, Abdallah H AlAlawin, Mahdi Mahfouf, Omar H Abdallah, ‎Mohammad A Shbool and Mahmoud F Mustafa

PLOS ONE, 2021, vol. 16, issue 9, 1-16

Abstract: A novel way of integrating the genetic algorithm (GA) and the analytic network process (ANP) is presented in this paper in order to develop a new warehouse assessment scheme, which is developed through various stages. First, we define the main criteria that influence a warehouse performance. The proposed algorithm that integrates the GA with the ANP is then utilized to determine the relative importance values of the defined criteria and sub-criteria by considering the interrelationships among them, and assign strength values for such interrelationships. Such an algorithm is also employed to linguistically present the relative importance and the strength of the interrelationships in a way that can circumvent the use of pairwise comparisons. Finally, the audit checklist that consists of questions related to the criteria is integrated with the proposed algorithm for the development of the warehouse assessment scheme. Validated on 45 warehouses, the proposed scheme has been shown to be able to identify the warehouse competitive advantages and the areas where more improvements can be achieved.

Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0256999 (text/html)
https://journals.plos.org/plosone/article/file?id= ... 56999&type=printable (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:plo:pone00:0256999

DOI: 10.1371/journal.pone.0256999

Access Statistics for this article

More articles in PLOS ONE from Public Library of Science
Bibliographic data for series maintained by plosone ().

 
Page updated 2025-03-19
Handle: RePEc:plo:pone00:0256999