EconPapers    
Economics at your fingertips  
 

PERSONA: A personalized model for code recommendation

Tam The Nguyen and Tung Thanh Nguyen

PLOS ONE, 2021, vol. 16, issue 11, 1-27

Abstract: Code recommendation is an important feature of modern software development tools to improve the productivity of programmers. The current advanced techniques in code recommendation mostly focus on the crowd-based approach. The basic idea is to collect a large pool of available source code, extract the common code patterns, and utilize the patterns for recommendations. However, programmers are different in multiple aspects including coding preferences, styles, levels of experience, and knowledge about libraries and frameworks. These differences lead to various usages of code elements. When the code of multiple programmers is combined and mined, such differences are disappeared, which could limit the accuracy of the code recommendation tool for a specific programmer. In the paper, we develop a code recommendation technique that focuses on the personal coding patterns of programmers. We propose Persona, a personalized code recommendation model. It learns personalized code patterns for each programmer based on their coding history, while also combines with project-specific and common code patterns. Persona supports recommending code elements including variable names, class names, methods, and parameters. The empirical evaluation suggests that our recommendation tool based on Persona is highly effective. It recommends the next identifier with top-1 accuracy of 60-65% and outperforms the baseline approaches.

Date: 2021
References: View complete reference list from CitEc
Citations:

Downloads: (external link)
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0259834 (text/html)
https://journals.plos.org/plosone/article/file?id= ... 59834&type=printable (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:plo:pone00:0259834

DOI: 10.1371/journal.pone.0259834

Access Statistics for this article

More articles in PLOS ONE from Public Library of Science
Bibliographic data for series maintained by plosone ().

 
Page updated 2025-03-19
Handle: RePEc:plo:pone00:0259834