EconPapers    
Economics at your fingertips  
 

Multi-membrane search algorithm

Qi Song, Yourui Huang, Wenhao Lai, Tao Han, Shanyong Xu and Xue Rong

PLOS ONE, 2021, vol. 16, issue 12, 1-20

Abstract: This research proposes a new multi-membrane search algorithm (MSA) based on cell biological behavior. Cell secretion protein behavior and cell division and fusion strategy are the main inspirations for the algorithm. In order to verify the performance of the algorithm, we used 19 benchmark functions to compare the MSA test results with MVO, GWO, MFO and ALO. The number of iterations of each algorithm on each benchmark function is 100, the population number is 10, and the running is repeated 50 times, and the average and standard deviation of the results are recorded. Tests show that the MSA is competitive in unimodal benchmark functions and multi-modal benchmark functions, and the results in composite benchmark functions are all superior to MVO, MFO, ALO, and GWO algorithms. This paper also uses MSA to solve two classic engineering problems: welded beam design and pressure vessel design. The result of welded beam design is 1.7252, and the result of pressure vessel design is 5887.7052, which is better than other comparison algorithms. Statistical experiments show that MSA is a high-performance algorithm that is competitive in unimodal and multimodal functions, and its performance in compound functions is significantly better than MVO, MFO, ALO, and GWO algorithms.

Date: 2021
References: View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0260512 (text/html)
https://journals.plos.org/plosone/article/file?id= ... 60512&type=printable (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:plo:pone00:0260512

DOI: 10.1371/journal.pone.0260512

Access Statistics for this article

More articles in PLOS ONE from Public Library of Science
Bibliographic data for series maintained by plosone ().

 
Page updated 2025-03-19
Handle: RePEc:plo:pone00:0260512