EconPapers    
Economics at your fingertips  
 

Improved log-Gaussian approximation for over-dispersed Poisson regression: Application to spatial analysis of COVID-19

Daisuke Murakami and Tomoko Matsui

PLOS ONE, 2022, vol. 17, issue 1, 1-20

Abstract: In the era of open data, Poisson and other count regression models are increasingly important. Still, conventional Poisson regression has remaining issues in terms of identifiability and computational efficiency. Especially, due to an identification problem, Poisson regression can be unstable for small samples with many zeros. Provided this, we develop a closed-form inference for an over-dispersed Poisson regression including Poisson additive mixed models. The approach is derived via mode-based log-Gaussian approximation. The resulting method is fast, practical, and free from the identification problem. Monte Carlo experiments demonstrate that the estimation error of the proposed method is a considerably smaller estimation error than the closed-form alternatives and as small as the usual Poisson regressions. For counts with many zeros, our approximation has better estimation accuracy than conventional Poisson regression. We obtained similar results in the case of Poisson additive mixed modeling considering spatial or group effects. The developed method was applied for analyzing COVID-19 data in Japan. This result suggests that influences of pedestrian density, age, and other factors on the number of cases change over periods.

Date: 2022
References: View complete reference list from CitEc
Citations:

Downloads: (external link)
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0260836 (text/html)
https://journals.plos.org/plosone/article/file?id= ... 60836&type=printable (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:plo:pone00:0260836

DOI: 10.1371/journal.pone.0260836

Access Statistics for this article

More articles in PLOS ONE from Public Library of Science
Bibliographic data for series maintained by plosone ().

 
Page updated 2025-03-19
Handle: RePEc:plo:pone00:0260836