EconPapers    
Economics at your fingertips  
 

Quantile estimation of semiparametric model with time-varying coefficients for panel count data

Yijun Wang and Weiwei Wang

PLOS ONE, 2021, vol. 16, issue 12, 1-18

Abstract: Panel count data frequently occurs in follow-up studies, such as medical research, social sciences, reliability studies, and tumorigenicity experiences. This type data has been extensively studied by various statistical models with time-invariant regression coefficients. However, the assumption of invariant coefficients may be violated in some reality, and the temporal covariate effects would be of great interest in research studies. This motivates us to consider a more flexible time-varying coefficient model. For statistical inference of the unknown functions, the quantile regression approach based on the B-spline approximation is developed. Asymptotic results on the convergence of the estimators are provided. Some simulation studies are presented to assess the finite-sample performance of the estimators. Finally, two applications of bladder cancer data and US flight delay data are analyzed by the proposed method.

Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0261224 (text/html)
https://journals.plos.org/plosone/article/file?id= ... 61224&type=printable (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:plo:pone00:0261224

DOI: 10.1371/journal.pone.0261224

Access Statistics for this article

More articles in PLOS ONE from Public Library of Science
Bibliographic data for series maintained by plosone ().

 
Page updated 2025-03-19
Handle: RePEc:plo:pone00:0261224