EconPapers    
Economics at your fingertips  
 

Machine learning accurately predicts the multivariate performance phenotype from morphology in lizards

Simon P Lailvaux, Avdesh Mishra, Pooja Pun, Md Wasi Ul Kabir, Robbie S Wilson, Anthony Herrel and Md Tamjidul Hoque

PLOS ONE, 2022, vol. 17, issue 1, 1-15

Abstract: Completing the genotype-to-phenotype map requires rigorous measurement of the entire multivariate organismal phenotype. However, phenotyping on a large scale is not feasible for many kinds of traits, resulting in missing data that can also cause problems for comparative analyses and the assessment of evolutionary trends across species. Measuring the multivariate performance phenotype is especially logistically challenging, and our ability to predict several performance traits from a given morphology is consequently poor. We developed a machine learning model to accurately estimate multivariate performance data from morphology alone by training it on a dataset containing performance and morphology data from 68 lizard species. Our final, stacked model predicts missing performance data accurately at the level of the individual from simple morphological measures. This model performed exceptionally well, even for performance traits that were missing values for >90% of the sampled individuals. Furthermore, incorporating phylogeny did not improve model fit, indicating that the phenotypic data alone preserved sufficient information to predict the performance based on morphological information. This approach can both significantly increase our understanding of performance evolution and act as a bridge to incorporate performance into future work on phenomics.

Date: 2022
References: View complete reference list from CitEc
Citations:

Downloads: (external link)
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0261613 (text/html)
https://journals.plos.org/plosone/article/file?id= ... 61613&type=printable (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:plo:pone00:0261613

DOI: 10.1371/journal.pone.0261613

Access Statistics for this article

More articles in PLOS ONE from Public Library of Science
Bibliographic data for series maintained by plosone ().

 
Page updated 2025-03-19
Handle: RePEc:plo:pone00:0261613