Analysis and prediction of hand, foot and mouth disease incidence in China using Random Forest and XGBoost
Delin Meng,
Jun Xu and
Jijun Zhao
PLOS ONE, 2021, vol. 16, issue 12, 1-16
Abstract:
Hand, foot and mouth disease (HFMD) is an increasingly serious public health problem, and it has caused an outbreak in China every year since 2008. Predicting the incidence of HFMD and analyzing its influential factors are of great significance to its prevention. Now, machine learning has shown advantages in infectious disease models, but there are few studies on HFMD incidence based on machine learning that cover all the provinces in mainland China. In this study, we proposed two different machine learning algorithms, Random Forest and eXtreme Gradient Boosting (XGBoost), to perform our analysis and prediction. We first used Random Forest to examine the association between HFMD incidence and potential influential factors for 31 provinces in mainland China. Next, we established Random Forest and XGBoost prediction models using meteorological and social factors as the predictors. Finally, we applied our prediction models in four different regions of mainland China and evaluated the performance of them. Our results show that: 1) Meteorological factors and social factors jointly affect the incidence of HFMD in mainland China. Average temperature and population density are the two most significant influential factors; 2) Population flux has different delayed effect in affecting HFMD incidence in different regions. From a national perspective, the model using population flux data delayed for one month has better prediction performance; 3) The prediction capability of XGBoost model was better than that of Random Forest model from the overall perspective. XGBoost model is more suitable for predicting the incidence of HFMD in mainland China.
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0261629 (text/html)
https://journals.plos.org/plosone/article/file?id= ... 61629&type=printable (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:plo:pone00:0261629
DOI: 10.1371/journal.pone.0261629
Access Statistics for this article
More articles in PLOS ONE from Public Library of Science
Bibliographic data for series maintained by plosone ().