EconPapers    
Economics at your fingertips  
 

Redundancy cancellation of compressed measurements by QRS complex alignment

Fahimeh Nasimi, Mohammad Reza Khayyambashi and Naser Movahhedinia

PLOS ONE, 2022, vol. 17, issue 2, 1-24

Abstract: The demand for long-term continuous care has led healthcare experts to focus on development challenges. On-chip energy consumption as a key challenge can be addressed by data reduction techniques. In this paper, the pseudo periodic nature of ElectroCardioGram(ECG) signals has been used to completely remove redundancy from frames. Compressing aligned QRS complexes by Compressed Sensing (CS), result in highly redundant measurement vectors. By removing this redundancy, a high cluster of near zero samples is gained. The efficiency of the proposed algorithm is assessed using the standard MIT-BIH database. The results indicate that by aligning ECG frames, the proposed technique can achieve superior reconstruction quality compared to state-of-the-art techniques for all compression ratios. This study proves that by aligning ECG frames with a 0.05% unaligned frame rate(R-peak detection error), more compression could be gained for PRD > 5% when 5-bit non-uniform quantizer is used. Furthermore, analysis done on power consumption of the proposed technique, indicates that a very good recovery performance can be gained by only consuming 4.9μW more energy per frame compared to traditional CS.

Date: 2022
References: View complete reference list from CitEc
Citations:

Downloads: (external link)
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0262219 (text/html)
https://journals.plos.org/plosone/article/file?id= ... 62219&type=printable (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:plo:pone00:0262219

DOI: 10.1371/journal.pone.0262219

Access Statistics for this article

More articles in PLOS ONE from Public Library of Science
Bibliographic data for series maintained by plosone ().

 
Page updated 2025-03-19
Handle: RePEc:plo:pone00:0262219