EconPapers    
Economics at your fingertips  
 

PCA driven mixed filter pruning for efficient convNets

Waqas Ahmed, Shahab Ansari, Muhammad Hanif and Akhtar Khalil

PLOS ONE, 2022, vol. 17, issue 1, 1-17

Abstract: Deployment of the deep neural networks (DNNs) on resource-constrained devices is a challenging task due to their limited memory and computational power. In most cases, the pruning techniques do not prune the DNNs to full extent and redundancy still exists in these models. Considering this, a mixed filter pruning approach based on principal component analysis (PCA) and geometric median is presented. First, a pre-trained model is analyzed by using PCA to identify the important filters for every layer. These important filters are then used to reconstruct the network with a fewer number of layers and a fewer number of filters per layer. A new network with optimized structure is constructed and trained on the data. Secondly, the trained model is then analyzed using geometric median as a base. The redundant filters are identified and removed which results in further compression of the network. Finally, the pruned model is fine tuned to regain the accuracy. Experiments on CIFAR-10, CIFAR-100 and ILSVRC 2017 datasets show that the proposed mixed pruning approach is feasible and can compress the network to greater extent without any significant loss to accuracy. With VGG-16 on CIFAR-10, the number of operations and parameters are reduced to 18.56× and 3.33×, respectively, with almost 1% loss in the accuracy. The compression rate for AlexNet on CIFAR-10 dataset is 2.61× and 4.85× in terms of number of operations and number of parameters, respectively, with a gain of 1.2% in the accuracy. On CIFAR-100, VGG-19 is compressed by 16.02 X in terms of number of operations and 36× in terms of number of parameters with a 2.6% loss of accuracy. Similarly, the compression rate for VGG-19 network on ILSVRC 2017 dataset is 1.87× and 2.4× for operations and parameters with 0.5% loss in accuracy.

Date: 2022
References: View complete reference list from CitEc
Citations:

Downloads: (external link)
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0262386 (text/html)
https://journals.plos.org/plosone/article/file?id= ... 62386&type=printable (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:plo:pone00:0262386

DOI: 10.1371/journal.pone.0262386

Access Statistics for this article

More articles in PLOS ONE from Public Library of Science
Bibliographic data for series maintained by plosone ().

 
Page updated 2025-03-19
Handle: RePEc:plo:pone00:0262386