A simple method for unsupervised anomaly detection: An application to Web time series data
Keisuke Yoshihara and
Kei Takahashi
PLOS ONE, 2022, vol. 17, issue 1, 1-25
Abstract:
We propose a simple anomaly detection method that is applicable to unlabeled time series data and is sufficiently tractable, even for non-technical entities, by using the density ratio estimation based on the state space model. Our detection rule is based on the ratio of log-likelihoods estimated by the dynamic linear model, i.e. the ratio of log-likelihood in our model to that in an over-dispersed model that we will call the NULL model. Using the Yahoo S5 data set and the Numenta Anomaly Benchmark data set, publicly available and commonly used benchmark data sets, we find that our method achieves better or comparable performance compared to the existing methods. The result implies that it is essential in time series anomaly detection to incorporate the specific information on time series data into the model. In addition, we apply the proposed method to unlabeled Web time series data, specifically, daily page view and average session duration data on an electronic commerce site that deals in insurance goods to show the applicability of our method to unlabeled real-world data. We find that the increase in page view caused by e-mail newsletter deliveries is less likely to contribute to completing an insurance contract. The result also suggests the importance of the simultaneous monitoring of more than one time series.
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0262463 (text/html)
https://journals.plos.org/plosone/article/file?id= ... 62463&type=printable (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:plo:pone00:0262463
DOI: 10.1371/journal.pone.0262463
Access Statistics for this article
More articles in PLOS ONE from Public Library of Science
Bibliographic data for series maintained by plosone ().