A random subspace ensemble classification model for discrimination of power quality events in solar PV microgrid power network
Arangarajan Vinayagam,
Mohammad Lutfi Othman,
Veerapandiyan Veerasamy,
Suganthi Saravan Balaji,
Kalaivani Ramaiyan,
Padmavathi Radhakrishnan,
Mohan Das Raman and
Noor Izzri Abdul Wahab
PLOS ONE, 2022, vol. 17, issue 1, 1-31
Abstract:
This study proposes SVM based Random Subspace (RS) ensemble classifier to discriminate different Power Quality Events (PQEs) in a photovoltaic (PV) connected Microgrid (MG) model. The MG model is developed and simulated with the presence of different PQEs (voltage and harmonic related signals and distinctive transients) in both on-grid and off-grid modes of MG network, respectively. In the pre-stage of classification, the features are extracted from numerous PQE signals by Discrete Wavelet Transform (DWT) analysis, and the extracted features are used to learn the classifiers at the final stage. In this study, first three Kernel types of SVM classifiers (Linear, Quadratic, and Cubic) are used to predict the different PQEs. Among the results that Cubic kernel SVM classifier offers higher accuracy and better performance than other kernel types (Linear and Quadradic). Further, to enhance the accuracy of SVM classifiers, a SVM based RS ensemble model is proposed and its effectiveness is verified with the results of kernel based SVM classifiers under the standard test condition (STC) and varying solar irradiance of PV in real time. From the final results, it can be concluded that the proposed method is more robust and offers superior performance with higher accuracy of classification than kernel based SVM classifiers.
Date: 2022
References: View complete reference list from CitEc
Citations:
Downloads: (external link)
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0262570 (text/html)
https://journals.plos.org/plosone/article/file?id= ... 62570&type=printable (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:plo:pone00:0262570
DOI: 10.1371/journal.pone.0262570
Access Statistics for this article
More articles in PLOS ONE from Public Library of Science
Bibliographic data for series maintained by plosone ().