EconPapers    
Economics at your fingertips  
 

Evaluation of soccer team defense based on prediction models of ball recovery and being attacked: A pilot study

Kosuke Toda, Masakiyo Teranishi, Keisuke Kushiro and Keisuke Fujii

PLOS ONE, 2022, vol. 17, issue 1, 1-14

Abstract: With the development of measurement technology, data on the movements of actual games in various sports can be obtained and used for planning and evaluating the tactics and strategy. Defense in team sports is generally difficult to be evaluated because of the lack of statistical data. Conventional evaluation methods based on predictions of scores are considered unreliable because they predict rare events throughout the game. Besides, it is difficult to evaluate various plays leading up to a score. In this study, we propose a method to evaluate team defense from a comprehensive perspective related to team performance by predicting ball recovery and being attacked, which occur more frequently than goals, using player actions and positional data of all players and the ball. Using data from 45 soccer matches, we examined the relationship between the proposed index and team performance in actual matches and throughout a season. Results show that the proposed classifiers predicted the true events (mean F1 score > 0.483) better than the existing classifiers which were based on rare events or goals (mean F1 score

Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0263051 (text/html)
https://journals.plos.org/plosone/article/file?id= ... 63051&type=printable (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:plo:pone00:0263051

DOI: 10.1371/journal.pone.0263051

Access Statistics for this article

More articles in PLOS ONE from Public Library of Science
Bibliographic data for series maintained by plosone ().

 
Page updated 2025-03-19
Handle: RePEc:plo:pone00:0263051