Several explorations on how to construct an early warning system for local government debt risk in China
Xing Li,
Xiangyu Ge and
Cong Chen
PLOS ONE, 2022, vol. 17, issue 2, 1-27
Abstract:
This paper aims to explore several ways to construct a scientific and comprehensive early warning system (EWS) for local government debt risk in China. In order to achieve this goal, this paper studies the local government debt risk from multiple perspectives, i.e., individual risk, contagion risk, static risk and dynamic risk. Firstly, taking China’s 30 provinces over the period of 2010~ 2018 as a sample, this paper establishes early warning indicators for individual risk of local government debt, and uses the network model to establish early warning indicators for contagion risk of local government debt. Then, this paper applies the criteria importance though intercrieria correlation (CRITIC) method and coefficient of variation method to obtain the proxy variable Ⅰ, which combines the above two risks. Secondly, based on the proxy variable Ⅰ, both the Markov-switching autoregressive (MS-AR) model and coefficient of variation method are used to obtain the proxy variable Ⅱ, which comprehensively considers the individual risk, contagion risk, static risk and dynamic risk of local government debt. Finally, machine learning algorithms are adopted to generalize the EWS designed in this paper. The results show that: (1) From different perspectives of local government debt risk, the list of provinces that require early warning is different; (2) The support vector machines can well generalize our EWS.
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0263391 (text/html)
https://journals.plos.org/plosone/article/file?id= ... 63391&type=printable (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:plo:pone00:0263391
DOI: 10.1371/journal.pone.0263391
Access Statistics for this article
More articles in PLOS ONE from Public Library of Science
Bibliographic data for series maintained by plosone ().