Residual tensile force estimation method for earth anchor using elasto-magnetic sensing system
Sehwan Park,
Junkyeong Kim and
Changgil Lee
PLOS ONE, 2022, vol. 17, issue 3, 1-24
Abstract:
The earth anchor method is used to prevent landslides, and repair and reinforce cut or steep slopes due to its benefits of ease of construction and economic feasibility. However, the loss of anchor force has become a problem, which may cause failure and collapse of slopes when the anchor force drops below the design anchor force. While numerous studies have been conducted to solve this problem, measuring the residual tensile force of existing earth anchors remains a challenge, as prior studies required sensors to be installed inside structural members at the time of construction. Therefore, to address this limitation, an experiment was performed in this study to develop an elasto-magnetic (EM) sensor for measuring tensile force based on the EM effect, which could be installed on externally exposed anchor heads. The commercial software ANSYS Maxwell was used to analyze the optimal sensor design for the experiment. Additionally, a series of tests to measure the tensile force was conducted by fabricating the sensor based on the numerical analysis results. The area of B-H curves measured by developed EM sensor was increased according to the decrease of tensile force. Also, The tensile force estimation equation was derived and verified using measured data. According to the results, the proposed method can be one of the solution for measuring residual tensile force of earth anchor.
Date: 2022
References: View complete reference list from CitEc
Citations:
Downloads: (external link)
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0264078 (text/html)
https://journals.plos.org/plosone/article/file?id= ... 64078&type=printable (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:plo:pone00:0264078
DOI: 10.1371/journal.pone.0264078
Access Statistics for this article
More articles in PLOS ONE from Public Library of Science
Bibliographic data for series maintained by plosone ().