LDIAED: A lightweight deep learning algorithm implementable on automated external defibrillators
Fahimeh Nasimi and
Mohammadreza Yazdchi
PLOS ONE, 2022, vol. 17, issue 2, 1-12
Abstract:
Differentiating between shockable and non-shockable Electrocardiogram (ECG) signals would increase the success of resuscitation by the Automated External Defibrillators (AED). In this study, a Deep Neural Network (DNN) algorithm is used to distinguish 1.4-second segment shockable signals from non-shockable signals promptly. The proposed technique is frequency-independent and is trained with signals from diverse patients extracted from MIT-BIH, MIT-BIH Malignant Ventricular Ectopy Database (VFDB), and a database for ventricular tachyarrhythmia signals from Creighton University (CUDB) resulting, in an accuracy of 99.1%. Finally, the raspberry pi minicomputer is used to load the optimized version of the model on it. Testing the implemented model on the processor by unseen ECG signals resulted in an average latency of 0.845 seconds meeting the IEC 60601-2-4 requirements. According to the evaluated results, the proposed technique could be used by AED’s.
Date: 2022
References: View complete reference list from CitEc
Citations:
Downloads: (external link)
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0264405 (text/html)
https://journals.plos.org/plosone/article/file?id= ... 64405&type=printable (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:plo:pone00:0264405
DOI: 10.1371/journal.pone.0264405
Access Statistics for this article
More articles in PLOS ONE from Public Library of Science
Bibliographic data for series maintained by plosone ().