Not so optimal: The evolution of mutual information in potassium voltage-gated channels
Alejandra Duran-Urriago and
Sarah Marzen
PLOS ONE, 2023, vol. 18, issue 2, 1-19
Abstract:
Potassium voltage-gated (Kv) channels need to detect and respond to rapidly changing ionic concentrations in their environment. With an essential role in regulating electric signaling, they would be expected to be optimal sensors that evolved to predict the ionic concentrations. To explore these assumptions, we use statistical mechanics in conjunction with information theory to model how animal Kv channels respond to changes in potassium concentrations in their environment. By measuring mutual information in representative Kv channel types across a variety of environments, we find two things. First, under weak conditions, there is a gating charge that maximizes mutual information with the environment. Second, as Kv channels evolved, they have moved towards decreasing mutual information with the environment. This either suggests that Kv channels do not need to act as sensors of their environment or that Kv channels have other functionalities that interfere with their role as sensors of their environment.
Date: 2023
References: View complete reference list from CitEc
Citations:
Downloads: (external link)
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0264424 (text/html)
https://journals.plos.org/plosone/article/file?id= ... 64424&type=printable (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:plo:pone00:0264424
DOI: 10.1371/journal.pone.0264424
Access Statistics for this article
More articles in PLOS ONE from Public Library of Science
Bibliographic data for series maintained by plosone ().