EconPapers    
Economics at your fingertips  
 

3-Dimensional convolutional neural networks for predicting StarCraft Ⅱ results and extracting key game situations

Insung Baek and Seoung Bum Kim

PLOS ONE, 2022, vol. 17, issue 3, 1-18

Abstract: In real-time strategy games, players collect resources, control various units, and create strategies to win. The creation of winning strategies requires accurately analyzing previous games; therefore, it is important to be able to identify the key situations that determined the outcomes of those games. However, previous studies have mainly focused on predicting game results. In this study, we propose a methodology to predict outcomes and to identify information about the turning points that determine outcomes in StarCraft Ⅱ, one of the most popular real-time strategy games. We used replay data from StarCraft Ⅱ that is similar to video data providing continuous multiple images. First, we trained a result prediction model using 3D-residual networks (3D-ResNet) and replay data to improve prediction performance by utilizing in-game spatiotemporal information. Second, we used gradient-weighted class activation mapping to extract information defining the key situations that significantly influenced the outcomes of the game. We then proved that the proposed method outperforms by comparing 2D-residual networks (2D-ResNet) using only one time-point information and 3D-ResNet with multiple time-point information. We verified the usefulness of our methodology on a 3D-ResNet with a gradient class activation map linked to a StarCraft Ⅱ replay dataset.

Date: 2022
References: View complete reference list from CitEc
Citations:

Downloads: (external link)
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0264550 (text/html)
https://journals.plos.org/plosone/article/file?id= ... 64550&type=printable (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:plo:pone00:0264550

DOI: 10.1371/journal.pone.0264550

Access Statistics for this article

More articles in PLOS ONE from Public Library of Science
Bibliographic data for series maintained by plosone ().

 
Page updated 2025-03-19
Handle: RePEc:plo:pone00:0264550