Application of LDA and word2vec to detect English off-topic composition
Yilan Qi and
Jun He
PLOS ONE, 2022, vol. 17, issue 2, 1-14
Abstract:
This paper presents an off-topic detection algorithm combining LDA and word2vec aiming at the problem of the lack of accurate and efficient off-topic detection algorithms in the English composition-assisted review system. The algorithm uses the LDA model to model the document and train the document through the word2vec, and uses the semantic relationship between the document’s topics and words to calculate the probability weighted sum for each topic and its feature words in the document, and finally selects the off-topic composition by setting a reasonable threshold. Different F values are obtained by changing the number of topics in the document, and the best number of topics is determined. Experimental results show that the proposed method is more effective than vector space model, can detect more off-topic compositions, and the accuracy is higher, the F value is more than 88%, which realizes the intelligent processing of off-topic detection of composition, and can be effectively applied in English composition teaching.
Date: 2022
References: View complete reference list from CitEc
Citations:
Downloads: (external link)
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0264552 (text/html)
https://journals.plos.org/plosone/article/file?id= ... 64552&type=printable (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:plo:pone00:0264552
DOI: 10.1371/journal.pone.0264552
Access Statistics for this article
More articles in PLOS ONE from Public Library of Science
Bibliographic data for series maintained by plosone ().