EconPapers    
Economics at your fingertips  
 

Signed random walk diffusion for effective representation learning in signed graphs

Jinhong Jung, Jaemin Yoo and U Kang

PLOS ONE, 2022, vol. 17, issue 3, 1-19

Abstract: How can we model node representations to accurately infer the signs of missing edges in a signed social graph? Signed social graphs have attracted considerable attention to model trust relationships between people. Various representation learning methods such as network embedding and graph convolutional network (GCN) have been proposed to analyze signed graphs. However, existing network embedding models are not end-to-end for a specific task, and GCN-based models exhibit a performance degradation issue when their depth increases. In this paper, we propose Signed Diffusion Network (SidNet), a novel graph neural network that achieves end-to-end node representation learning for link sign prediction in signed social graphs. We propose a new random walk based feature aggregation, which is specially designed for signed graphs, so that SidNet effectively diffuses hidden node features and uses more information from neighboring nodes. Through extensive experiments, we show that SidNet significantly outperforms state-of-the-art models in terms of link sign prediction accuracy.

Date: 2022
References: View complete reference list from CitEc
Citations:

Downloads: (external link)
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0265001 (text/html)
https://journals.plos.org/plosone/article/file?id= ... 65001&type=printable (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:plo:pone00:0265001

DOI: 10.1371/journal.pone.0265001

Access Statistics for this article

More articles in PLOS ONE from Public Library of Science
Bibliographic data for series maintained by plosone ().

 
Page updated 2025-03-19
Handle: RePEc:plo:pone00:0265001