Deep learning to enable color vision in the dark
Andrew W Browne,
Ekaterina Deyneka,
Francesco Ceccarelli,
Josiah K To,
Siwei Chen,
Jianing Tang,
Anderson N Vu and
Pierre F Baldi
PLOS ONE, 2022, vol. 17, issue 4, 1-15
Abstract:
Humans perceive light in the visible spectrum (400-700 nm). Some night vision systems use infrared light that is not perceptible to humans and the images rendered are transposed to a digital display presenting a monochromatic image in the visible spectrum. We sought to develop an imaging algorithm powered by optimized deep learning architectures whereby infrared spectral illumination of a scene could be used to predict a visible spectrum rendering of the scene as if it were perceived by a human with visible spectrum light. This would make it possible to digitally render a visible spectrum scene to humans when they are otherwise in complete “darkness” and only illuminated with infrared light. To achieve this goal, we used a monochromatic camera sensitive to visible and near infrared light to acquire an image dataset of printed images of faces under multispectral illumination spanning standard visible red (604 nm), green (529 nm) and blue (447 nm) as well as infrared wavelengths (718, 777, and 807 nm). We then optimized a convolutional neural network with a U-Net-like architecture to predict visible spectrum images from only near-infrared images. This study serves as a first step towards predicting human visible spectrum scenes from imperceptible near-infrared illumination. Further work can profoundly contribute to a variety of applications including night vision and studies of biological samples sensitive to visible light.
Date: 2022
References: View complete reference list from CitEc
Citations:
Downloads: (external link)
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0265185 (text/html)
https://journals.plos.org/plosone/article/file?id= ... 65185&type=printable (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:plo:pone00:0265185
DOI: 10.1371/journal.pone.0265185
Access Statistics for this article
More articles in PLOS ONE from Public Library of Science
Bibliographic data for series maintained by plosone (plosone@plos.org).