Feature and decision-level fusion for schizophrenia detection based on resting-state fMRI data
Ali H Algumaei,
Rami F Algunaid,
Muhammad A Rushdi and
Inas A Yassine
PLOS ONE, 2022, vol. 17, issue 5, 1-20
Abstract:
Mental disorders, especially schizophrenia, still pose a great challenge for diagnosis in early stages. Recently, computer-aided diagnosis techniques based on resting-state functional magnetic resonance imaging (Rs-fMRI) have been developed to tackle this challenge. In this work, we investigate different decision-level and feature-level fusion schemes for discriminating between schizophrenic and normal subjects. Four types of fMRI features are investigated, namely the regional homogeneity, voxel-mirrored homotopic connectivity, fractional amplitude of low-frequency fluctuations and amplitude of low-frequency fluctuations. Data denoising and preprocessing were first applied, followed by the feature extraction module. Four different feature selection algorithms were applied, and the best discriminative features were selected using the algorithm of feature selection via concave minimization (FSV). Support vector machine classifiers were trained and tested on the COBRE dataset formed of 70 schizophrenic subjects and 70 healthy subjects. The decision-level fusion method outperformed the single-feature-type approaches and achieved a 97.85% accuracy, a 98.33% sensitivity, a 96.83% specificity. Moreover, feature-fusion scheme resulted in a 98.57% accuracy, a 99.71% sensitivity, a 97.66% specificity, and an area under the ROC curve of 0.9984. In general, decision-level and feature-level fusion schemes boosted the performance of schizophrenia detectors based on fMRI features.
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0265300 (text/html)
https://journals.plos.org/plosone/article/file?id= ... 65300&type=printable (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:plo:pone00:0265300
DOI: 10.1371/journal.pone.0265300
Access Statistics for this article
More articles in PLOS ONE from Public Library of Science
Bibliographic data for series maintained by plosone ().