EconPapers    
Economics at your fingertips  
 

CircuitBot: Learning to survive with robotic circuit drawing

Xianglong Tan, Weijie Lyu and Andre Rosendo

PLOS ONE, 2022, vol. 17, issue 3, 1-14

Abstract: Robots with the ability to actively acquire power from surroundings will be greatly beneficial for long-term autonomy and to survive in uncertain environments. In this work, a scenario is presented where a robot has limited energy, and the only way to survive is to access the energy from an unregulated power source. With no wires or resistors available, the robot heuristically learns to maximize the input voltage on its system while avoiding potential obstacles during the connection. CircuitBot is a 6 DOF manipulator capable of drawing circuit patterns with graphene-based conductive ink, and it uses a state-of-the-art continuous/categorical Bayesian Optimization to optimize the placement of conductive shapes and maximize the energy it receives. Our comparative results with traditional Bayesian Optimization and Genetic algorithms show that the robot learns to maximize the voltage within the smallest number of trials, even when we introduce obstacles to ground the circuit and steal energy from the robot. As autonomous robots become more present, in our houses and other planets, our proposed method brings a novel way for machines to keep themselves functional by optimizing their own electric circuits.

Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0265340 (text/html)
https://journals.plos.org/plosone/article/file?id= ... 65340&type=printable (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:plo:pone00:0265340

DOI: 10.1371/journal.pone.0265340

Access Statistics for this article

More articles in PLOS ONE from Public Library of Science
Bibliographic data for series maintained by plosone ().

 
Page updated 2025-03-19
Handle: RePEc:plo:pone00:0265340