Interactive tool for clustering and forecasting patterns of Taiwan COVID-19 spread
Mahsa Ashouri and
Frederick Kin Hing Phoa
PLOS ONE, 2022, vol. 17, issue 6, 1-11
Abstract:
The COVID-19 data analysis is essential for policymakers to analyze the outbreak and manage the containment. Many approaches based on traditional time series clustering and forecasting methods, such as hierarchical clustering and exponential smoothing, have been proposed to cluster and forecast the COVID-19 data. However, most of these methods do not scale up with the high volume of cases. Moreover, the interactive nature of the application demands further critically complex yet compelling clustering and forecasting techniques. In this paper, we propose a web-based interactive tool to cluster and forecast the available data of Taiwan COVID-19 confirmed infection cases. We apply the Model-based (MOB) tree and domain-relevant attributes to cluster the dataset and display forecasting results using the Ordinary Least Square (OLS) method. In this OLS model, we apply a model produced by the MOB tree to forecast all series in each cluster. Our user-friendly parametric forecasting method is computationally cheap. A web app based on R’s Shiny App makes it easier for practitioners to find clustering and forecasting results while choosing different parameters such as domain-relevant attributes. These results could help in determining the spread pattern and be utilized by medical researchers.
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0265477 (text/html)
https://journals.plos.org/plosone/article/file?id= ... 65477&type=printable (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:plo:pone00:0265477
DOI: 10.1371/journal.pone.0265477
Access Statistics for this article
More articles in PLOS ONE from Public Library of Science
Bibliographic data for series maintained by plosone ().