Prediction of malignant transformation in oral epithelial dysplasia using infrared absorbance spectra
Barnaby G Ellis,
Conor A Whitley,
Asterios Triantafyllou,
Philip J Gunning,
Caroline I Smith,
Steve D Barrett,
Peter Gardner,
Richard J Shaw,
Peter Weightman and
Janet M Risk
PLOS ONE, 2022, vol. 17, issue 3, 1-14
Abstract:
Oral epithelial dysplasia (OED) is a histopathologically-defined, potentially premalignant condition of the oral cavity. The rate of transformation to frank carcinoma is relatively low (12% within 2 years) and prediction based on histopathological grade is unreliable, leading to both over- and under-treatment. Alternative approaches include infrared (IR) spectroscopy, which is able to classify cancerous and non-cancerous tissue in a number of cancers, including oral. The aim of this study was to explore the capability of FTIR (Fourier-transform IR) microscopy and machine learning as a means of predicting malignant transformation of OED. Supervised, retrospective analysis of longitudinally-collected OED biopsy samples from 17 patients with high risk OED lesions: 10 lesions transformed and 7 did not over a follow-up period of more than 3 years. FTIR spectra were collected from routine, unstained histopathological sections and machine learning used to predict malignant transformation, irrespective of OED classification. PCA-LDA (principal component analysis followed by linear discriminant analysis) provided evidence that the subsequent transforming status of these 17 lesions could be predicted from FTIR data with a sensitivity of 79 ± 5% and a specificity of 76 ± 5%. Six key wavenumbers were identified as most important in this classification. Although this pilot study used a small cohort, the strict inclusion criteria and classification based on known outcome, rather than OED grade, make this a novel study in the field of FTIR in oral cancer and support the clinical potential of this technology in the surveillance of OED.
Date: 2022
References: View complete reference list from CitEc
Citations:
Downloads: (external link)
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0266043 (text/html)
https://journals.plos.org/plosone/article/file?id= ... 66043&type=printable (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:plo:pone00:0266043
DOI: 10.1371/journal.pone.0266043
Access Statistics for this article
More articles in PLOS ONE from Public Library of Science
Bibliographic data for series maintained by plosone ().