Rett syndrome severity estimation with the BioStamp nPoint using interactions between heart rate variability and body movement
Pradyumna Byappanahalli Suresha,
Heather O’Leary,
Daniel C Tarquinio,
Jana Von Hehn and
Gari D Clifford
PLOS ONE, 2023, vol. 18, issue 3, 1-17
Abstract:
Rett syndrome, a rare genetic neurodevelopmental disorder in humans, does not have an effective cure. However, multiple therapies and medications exist to treat symptoms and improve patients’ quality of life. As research continues to discover and evaluate new medications for Rett syndrome patients, there remains a lack of objective physiological and motor activity-based (physio-motor) biomarkers that enable the measurement of the effect of these medications on the change in patients’ Rett syndrome severity. In our work, using a commercially available wearable chest patch, we recorded simultaneous electrocardiogram and three-axis acceleration from 20 patients suffering from Rett syndrome along with the corresponding Clinical Global Impression—Severity score, which measures the overall disease severity on a 7-point Likert scale. We derived physio-motor features from these recordings that captured heart rate variability, activity metrics, and the interactions between heart rate and activity. Further, we developed machine learning (ML) models to classify high-severity Rett patients from low-severity Rett patients using the derived physio-motor features. For the best-trained model, we obtained a pooled area under the receiver operating curve equal to 0.92 via a leave-one-out-patient cross-validation approach. Finally, we computed the feature popularity scores for all the trained ML models and identified physio-motor biomarkers for Rett syndrome.
Date: 2023
References: View complete reference list from CitEc
Citations:
Downloads: (external link)
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0266351 (text/html)
https://journals.plos.org/plosone/article/file?id= ... 66351&type=printable (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:plo:pone00:0266351
DOI: 10.1371/journal.pone.0266351
Access Statistics for this article
More articles in PLOS ONE from Public Library of Science
Bibliographic data for series maintained by plosone ().