EconPapers    
Economics at your fingertips  
 

Predicting adverse drug effects: A heterogeneous graph convolution network with a multi-layer perceptron approach

Chen Y-H, Shih Y-T, Chien C-S and Tsai C-S

PLOS ONE, 2022, vol. 17, issue 12, 1-16

Abstract: We apply a heterogeneous graph convolution network (GCN) combined with a multi-layer perceptron (MLP) denoted by GCNMLP to explore the potential side effects of drugs. Here the SIDER, OFFSIDERS, and FAERS are used as the datasets. We integrate the drug information with similar characteristics from the datasets of known drugs and side effect networks. The heterogeneous graph networks explore the potential side effects of drugs by inferring the relationship between similar drugs and related side effects. This novel in silico method will shorten the time spent in uncovering the unseen side effects within routine drug prescriptions while highlighting the relevance of exploring drug mechanisms from well-documented drugs. In our experiments, we inquire about the drugs Vancomycin, Amlodipine, Cisplatin, and Glimepiride from a trained model, where the parameters are acquired from the dataset SIDER after training. Our results show that the performance of the GCNMLP on these three datasets is superior to the non-negative matrix factorization method (NMF) and some well-known machine learning methods with respect to various evaluation scales. Moreover, new side effects of drugs can be obtained using the GCNMLP.

Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0266435 (text/html)
https://journals.plos.org/plosone/article/file?id= ... 66435&type=printable (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:plo:pone00:0266435

DOI: 10.1371/journal.pone.0266435

Access Statistics for this article

More articles in PLOS ONE from Public Library of Science
Bibliographic data for series maintained by plosone ().

 
Page updated 2025-05-31
Handle: RePEc:plo:pone00:0266435