Industrial equipment detection algorithm under complex working conditions based on ROMS R-CNN
Junpeng Wu,
Shaobo Tang,
Xianglei Li and
Yibo Zhou
PLOS ONE, 2022, vol. 17, issue 4, 1-18
Abstract:
In the paper, we proposed a deep learning-based industrial equipment detection algorithm ROMS R-CNN (Rotation Occlusion Multi-Scale Region-CNN). It can solve the problem of inaccurate detection of industrial equipment under complex working conditions such as multi-scale ratio, rotation tilt, occlusion and overlap. The method proposed in this paper first is to construct the MobileNetV2 as the feature pyramid network, and then to combine high semantic information with high resolution information solved industrial equipment detection of different scales. Secondly, a specific rotation anchor scheme is proposed, and the data set is clustered through the k-means algorithm to obtain a specific aspect ratio. Combined with the rotation angle, a rotation anchor of any direction and size is generated to solve the problem of easy tilting of industrial equipment. Finally, a Non-Maximum Suppression algorithm with penalty factors is introduced to solve the overlapping in industrial equipment detection. The experimental results in common industrial equipment detection show that this method is better than other algorithms, significantly improves the missed detection and false detection, and the mAP reaches 0.939.
Date: 2022
References: View complete reference list from CitEc
Citations:
Downloads: (external link)
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0266444 (text/html)
https://journals.plos.org/plosone/article/file?id= ... 66444&type=printable (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:plo:pone00:0266444
DOI: 10.1371/journal.pone.0266444
Access Statistics for this article
More articles in PLOS ONE from Public Library of Science
Bibliographic data for series maintained by plosone ().