A novel smartphone-based activity recognition modeling method for tracked equipment in forest operations
Ryer M Becker and
Robert F Keefe
PLOS ONE, 2022, vol. 17, issue 4, 1-27
Abstract:
Activity recognition modelling using smartphone Inertial Measurement Units (IMUs) is an underutilized resource defining and assessing work efficiency for a wide range of natural resource management tasks. This study focused on the initial development and validation of a smartphone-based activity recognition system for excavator-based mastication equipment working in Ponderosa pine (Pinus ponderosa) plantations in North Idaho, USA. During mastication treatments, sensor data from smartphone gyroscopes, accelerometers, and sound pressure meters (decibel meters) were collected at three sampling frequencies (10, 20, and 50 hertz (Hz)). These data were then separated into 9 time domain features using 4 sliding window widths (1, 5, 7.5 and 10 seconds) and two levels of window overlap (50% and 90%). Random forest machine learning algorithms were trained and evaluated for 40 combinations of model parameters to determine the best combination of parameters. 5 work elements (masticate, clear, move, travel, and delay) were classified with the performance metrics for individual elements of the best model (50 Hz, 10 second window, 90% window overlap) falling within the following ranges: area under the curve (AUC) (95.0% - 99.9%); sensitivity (74.9% - 95.6%); specificity (90.8% - 99.9%); precision (81.1% - 98.3%); F1-score (81.9% - 96.9%); balanced accuracy (87.4% - 97.7%). Smartphone sensors effectively characterized individual work elements of mechanical fuel treatments. This study is the first example of developing a smartphone-based activity recognition model for ground-based forest equipment. The continued development and dissemination of smartphone-based activity recognition models may assist land managers and operators with ubiquitous, manufacturer-independent systems for continuous and automated time study and production analysis for mechanized forest operations.
Date: 2022
References: View complete reference list from CitEc
Citations:
Downloads: (external link)
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0266568 (text/html)
https://journals.plos.org/plosone/article/file?id= ... 66568&type=printable (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:plo:pone00:0266568
DOI: 10.1371/journal.pone.0266568
Access Statistics for this article
More articles in PLOS ONE from Public Library of Science
Bibliographic data for series maintained by plosone ().