Improved WOA and its application in feature selection
Wei Liu,
Zhiqing Guo,
Feng Jiang,
Guangwei Liu,
Dong Wang and
Zishun Ni
PLOS ONE, 2022, vol. 17, issue 5, 1-33
Abstract:
Feature selection (FS) can eliminate many redundant, irrelevant, and noisy features in high-dimensional data to improve machine learning or data mining models’ prediction, classification, and computational performance. We proposed an improved whale optimization algorithm (IWOA) and improved k-nearest neighbors (IKNN) classifier approaches for feature selection (IWOAIKFS). Firstly, WOA is improved by using chaotic elite reverse individual, probability selection of skew distribution, nonlinear adjustment of control parameters and position correction strategy to enhance the search performance of the algorithm for feature subsets. Secondly, the sample similarity measurement criterion and weighted voting criterion based on the simulated annealing algorithm to solve the weight matrix M are proposed to improve the KNN classifier and improve the evaluation performance of the algorithm on feature subsets. The experimental results show: IWOA not only has better optimization performance when solving benchmark functions of different dimensions, but also when used with IKNN for feature selection, IWOAIKFS has better classification and robustness.
Date: 2022
References: View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0267041 (text/html)
https://journals.plos.org/plosone/article/file?id= ... 67041&type=printable (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:plo:pone00:0267041
DOI: 10.1371/journal.pone.0267041
Access Statistics for this article
More articles in PLOS ONE from Public Library of Science
Bibliographic data for series maintained by plosone ().