EconPapers    
Economics at your fingertips  
 

Dam deformation forecasting using SVM-DEGWO algorithm based on phase space reconstruction

Mingjun Li, Jiangyang Pan, Yaolai Liu, Yazhou Wang, Wenchuan Zhang and Junxing Wang

PLOS ONE, 2022, vol. 17, issue 6, 1-39

Abstract: A hybrid model integrating chaos theory, support vector machine (SVM) and the difference evolution grey wolf optimization (DEGWO) algorithm is developed to analyze and predict dam deformation. Firstly, the chaotic characteristics of the dam deformation time series will be identified, mainly using the Lyapunov exponent method, the correlation dimension method and the kolmogorov entropy method. Secondly, the hybrid model is established for dam deformation forecasting. Taking SVM as the core, the deformation time series is reconstructed in phase space to determine the input variables of SVM, and the GWO algorithm is improved to realize the optimization of SVM parameters. Prior to this, the effectiveness of DEGWO algorithm based on the fusion of the difference evolution (DE) and GWO algorithm has been verified by 15 sets of test functions in CEC 2005. Finally, take the actual monitoring displacement of Jinping I super-high arch dam as examples. The engineering application examples show that the PSR-SVM-DEGWO model established performs better in terms of fitting and prediction accuracy compared with existing models.

Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0267434 (text/html)
https://journals.plos.org/plosone/article/file?id= ... 67434&type=printable (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:plo:pone00:0267434

DOI: 10.1371/journal.pone.0267434

Access Statistics for this article

More articles in PLOS ONE from Public Library of Science
Bibliographic data for series maintained by plosone ().

 
Page updated 2025-05-31
Handle: RePEc:plo:pone00:0267434