EconPapers    
Economics at your fingertips  
 

Pressure vessel-oriented visual inspection method based on deep learning

Pu Liao and Liu Guixiong

PLOS ONE, 2022, vol. 17, issue 5, 1-21

Abstract: The detection of surface parameters of pressure vessel welds guarantees safe operation. To address the problems of low efficiency and poor accuracy of traditional manual inspection methods, a method for welding morphological parameters combined with vision and structured light is proposed in this study. First, a feature point extraction algorithm for weld parameters based on deep convolution was proposed. An accurate extraction method of weld image feature point coordinates was designed based on the combination of the loss function via seam undercut feature recognition and weld feature point extraction network structure. Second, a training data enhancement method based on the third-order non-uniform rational B-spline (NURBS) curve was proposed to reduce the amount of data collection for training. Finally, a pressure vessel measurement device was designed, and the feature point extraction performance of the deep network and common feature point extraction networks, DeepLabCut and HR-net, proposed in this study were compared to analyze the theoretical accuracy of the surface parameter measurement. The results indicated that the theoretical accuracy of the parameter measurements was within 0.065 mm.

Date: 2022
References: View complete reference list from CitEc
Citations:

Downloads: (external link)
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0267743 (text/html)
https://journals.plos.org/plosone/article/file?id= ... 67743&type=printable (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:plo:pone00:0267743

DOI: 10.1371/journal.pone.0267743

Access Statistics for this article

More articles in PLOS ONE from Public Library of Science
Bibliographic data for series maintained by plosone ().

 
Page updated 2025-05-03
Handle: RePEc:plo:pone00:0267743