The first moment of income density functions and estimation of single-parametric Lorenz curves
Liang Frank Shao
PLOS ONE, 2022, vol. 17, issue 6, 1-24
Abstract:
This paper discusses the first moment, i.e., the mean income point, of income density functions and the estimation of single-parametric Lorenz curves. The mean income point is implied by an income density function and associated with a single-parametric Lorenz function. The boundary of the mean income point can show the flexibility of a parametric Lorenz function. I minimize the sum of squared errors in fitting both grouped income data and the mean income point and identify the best parametric Lorenz function using a large panel dataset. I find that each parametric Lorenz function may do a better job than others in fitting particular grouped data; however, a zero- and unit-modal single-parametric Lorenz function is identified to be the best of eight typical optional functions in fitting most (666 out of 969) observations of a large panel dataset. I perform a Monte Carlo simulation as a robustness check of the empirical estimation.
Date: 2022
References: Add references at CitEc
Citations:
Downloads: (external link)
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0267828 (text/html)
https://journals.plos.org/plosone/article/file?id= ... 67828&type=printable (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:plo:pone00:0267828
DOI: 10.1371/journal.pone.0267828
Access Statistics for this article
More articles in PLOS ONE from Public Library of Science
Bibliographic data for series maintained by plosone ().