EconPapers    
Economics at your fingertips  
 

Predictive models in SMA II natural history trajectories using machine learning: A proof of concept study

Giorgia Coratti, Jacopo Lenkowicz, Stefano Patarnello, Consolato Gullì, Maria Carmela Pera, Carlotta Masciocchi, Riccardo Rinaldi, Valeria Lovato, Antonio Leone, Alfredo Cesario and Eugenio Mercuri

PLOS ONE, 2022, vol. 17, issue 5, 1-10

Abstract: It is known from previous literature that type II Spinal Muscular Atrophy (SMA) patients generally, after the age of 5 years, presents a steep deterioration until puberty followed by a relative stability, as most abilities have been lost. Although it is possible to identify points of slope indicating early improvement, steep decline and relative stabilizations, there is still a lot of variability within each age group and it’s not always possible to predict individual trajectories of progression from age only. The aim of the study was to develop a predictive model based on machine learning using an XGBoost algorithm for regression and report, explore and quantify, in a single centre longitudinal natural history study, the influence of clinical variables on the 6/12-months Hammersmith Motor Functional Scale Expanded score prediction (HFMSE). This study represents the first approach to artificial intelligence and trained models for the prediction of individualized trajectories of HFMSE disease progression using individual characteristics of the patient. The application of this method to larger cohorts may allow to identify different classes of progression, a crucial information at the time of the new commercially available therapies.

Date: 2022
References: View complete reference list from CitEc
Citations:

Downloads: (external link)
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0267930 (text/html)
https://journals.plos.org/plosone/article/file?id= ... 67930&type=printable (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:plo:pone00:0267930

DOI: 10.1371/journal.pone.0267930

Access Statistics for this article

More articles in PLOS ONE from Public Library of Science
Bibliographic data for series maintained by plosone ().

 
Page updated 2025-05-31
Handle: RePEc:plo:pone00:0267930